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470 M. J. SEATON ON THE

Part I is concerned with the general theory of anti-symmetric wave functions for continuous states
of atomic systems. For an (N+1)-electron system the complete wave function is expressed in
terms of an expansion involving products of the N-electron core functions multiplied by free
electron orbitals, the equations satisfied by the latter being obtained from the Schrédinger equation.
It is shown that the only consistent means of obtaining anti-symmetric wave functions in approxi-
mate solutions is to make the expansion explicitly anti-symmetric. This procedure gives equations
for the free-electron orbitals which are similar to bound-state Hartree-Fock equations. The
further approximation of using Hartree-Fock wave functions for the core states is then discussed.

Certain nl%! configurations are analyzed in detail using a total angular momentum repre-
sentation. It is shown that the equations may be uncoupled if the energy differences between the
nl? terms are neglected (exact resonance approximation), and that approximate solutions of the
full coupled equations may be obtained in terms of the exact resonance solutions provided that
a suitable normalization condition is used.

Part II is concerned with applications to electron excitation of the ground configuration terms
of Or. Distorted wave approximations show that other effects are insignificant compared to the
contribution from the p angular momentum component of the free orbitals, but give for this results
which are too large by several orders of magnitude. The coupled equations for the p-wave are
solved in an exact resonance approximation, with neglect of ls, 25 exchange interactions. At a
check point an exact resonance solution including ls, 25 exchange terms is obtained, and finally
a complete solution of the coupled equations. Inelastic collision cross-sections calculated from the
exact resonance solutions are found to be 72 9, (without 1ls, 25 exchange) and 95 9, (with 1s, 2s
exchange) of the result from the complete solution. Final curves for the collision parameters,
which rise to within 70 9%, of the limit set by charge conservation, are considered to be of an
accuracy approaching that of the Hartree-Fock method for bound-state problems.

A final section is concerned with the contributions of the p-wave to elastic scattering of slow
electrons by O1.

INTRODUCTION

Forbidden transitions between the three terms, 3P, 1D and 1S, of the ground configuration
of atomic oxygen give rise to some of the most prominent lines in the spectrum of the aurora
and of the novae. They are typical of many similar transitions occurring in the aurora,
nebulae, novae and solar corona (Bates, Massey & Pearse 1948; Aller & Menzel 1945;
Barbier 1948; Woolley & Allen 1948). It is to be expected that electron excitation and
deactivation phenomena are important factors in determining the populations of these
levels, and it is therefore of considerable astrophysical interest to have reliable data on the
rate coeflicients involved.

The mechanism of electron excitation of such levels depends largely, if not entirely, on
electron exchange effects, which result from taking properly anti-symmetric wave functions
for the complete system of atom plus free electron. Previous calculations, which only allowed
for exchange by first-order perturbation methods, have recently been shown to give cross-
sections which may exceed the limit set by change conservation by as much as several orders
of magnitude (Bates, Fundaminsky, Leech & Massey 1950). To make further progress, it
is therefore necessary to develop a more complete treatment of electron exchange for
continuous states.

The approach adopted is suggested by the Hartree-Fock method for bound states, which
is summarized in the first section of the present paper. Although Hartree-Fock wave func-
tions have previously been used in various continuous state problems,T no complete justi-

T Morse & Allis 1933; Bates & Massey 1941, 1943, 1947; Bates & Seaton 1949; Seaton 1950, 19514,5;
Huang 1945.
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HARTREE-FOCK EQUATIONS FOR CONTINUOUS STATES 471

fication for the procedure appears to have been given (7.4.C. p. 218),1 and the equations
used, derived largely by analogy with the bound-state equations, have not included the
coupling terms required in collision theory. Bound-state Hartree-Fock equations are
obtained by adopting an explicitly anti-symmetric expression for the wave functions and
using the Ritz variation method to minimize the energy integral. Since this method is not
immediately applicable for continuous states, the method used is to express the complete
wave function in terms of an explicitly anti-symmetric expansion involving core wave
functions and free-electron orbitals, the equations satisfied by the latter being obtained from
the Schrodinger equation. Thisis discussed in part I of the present paper. Asomewhatsimilar
approach to nuclear problems is provided by the resonating group-structure method of
Wheeler (1937).

For the calculation of the electron excitation parameters of O1 (part II) the p-wave is
the only angular momentum component for which the full coupled equations are required.
The problem of solving these equations is of comparable complexity to the problem of
calculating atomic structures by the Hartree-Fock method, for while there is no eigenvalue
problem as in the bound case, solutions are required over a range of energy values. In
solving the coupled equations by an iteration procedure it is most desirable to have a good
first approximation. It is shown that this may be obtained in an exact resonance approxi-
mation, for which the equations may be uncoupled. The method used should be applicable
to a number of excitation processes of astrophysical interest.

Hartree atomic units, for which # = 27,m = 1 ande = 1 (T".A4.S. p. 428) are used through-
out, with the exceptions that cross-sections are given in units of a3 (8:806 x 10~7cm?, or
7 times the atomic unit of area) and numerical values for energies are given in rydbergs
(18-54 ¢V, or half the atomic unit of energy).

ParT I. THE HARTREE-FOCK EQUATIONS FOR CONTINUOUS STATES
1. Summary of the Hartree-Fock method for bound states§
1-1. General formulation

We consider the Hartree-Fock method for an N-electron atom with nuclear charge Z
and Hamiltonian
£ 1)

N N o1
H=3 (-41-%)+ 3 —.
i=1 r; i>j=17
Denoting the space and spin co-ordinates by X,,X,, ...,Xy, the complete wave function ¥
is written as a linear combination of anti-symmetric functions of the form
u (1) uy(2) ... u(N)
1
D{ul,u2,...,uN; Xl’xz’“.,XN}:m uZ(:]') '3" ’E" ‘g' . (2)
uy(l) ... . uy(N)

T References to Mott & Massey, Theory of atomic collisions, Oxford, 1949, will for brevity be given as
T.A.C. followed by the page number. Similarly, references to Condon & Shortley, Theory of atomic spectra,
Cambridge, 1935, 1951, will be given as T.4.S.

1 Further calculations on electron excitation of the ground configuration terms of O, Ou, Nemr and
N1 are being carried out and will be reported elsewhere.

§ For general references to the Hartree-Fock method see Hartree (1946—7), Fock (1930), Lennard-Jones
(1930) and Slater (1951).

58-2
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472 M. J. SEATON ON THE

These will be referred to as D-functions. The one-electrons orbitals u;(j) =u,(X;) are to be
determined using the variation principle. Within a given D-function we may take the u; to
form an orthonormal set,

A7) = [ (x) (%) dx = 906, ), (3)

which ensures that the D-functions are normalized to unity. This involves no loss of gener-
ality, since any constant multiple of ; may be added to «; (¢=7) without altering D.
The equations satisfied by the #; may readily be obtained when ¢ is represented by a

single D-function. The energy integral £ = | D*HDdX, ... dx, reduces to

£ (a4 $ 061510 (@

where H,(ab) = f w*(1) H,u,(1) dx,, (5)
H = —Vi—7 (6)

and (ab|od) = f f (1) uk(2) ;—T;uc(l) 1,(2) dx, dx,. (7)

To ensure that (3) is satisfied the u; are varied so as to minimize

E =FE— z A A7), (8)

i,j=1

the A; being Lagrange multipliers. This gives the Hartree-Fock equationst

()42{ j(1) (1) =v(1) ;(1) = ;1)) = 0, (9)

where * 0(1) = f w(2) u(2) dx,, (10)

12
Multiplying (9) by ##(1) and integrating over X, using (3) gives
Ay = H\ (k) + 2 [(k | §) — (k| ji)]- (11)
J

N
The energy reduces to E=3>{,—1 2 () — (7] 5]} (12)
i=1

1-2. Addition of an electron to an ion
We consider the addition of a valence electron to an N-electron core in the approximation

of neglecting the perturbation of the core wave function. When both the core and the complete
system may be expressed as single D-function the energy is

N
E=E4+H(N+1L,N+1)+3[G,N+1]i, N+1)— (i, N+ N+1|L4)],  (13)
i=1

+ Omission of the v;; and A;; for j=1 gives the Hartree self-consistent field equations.
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HARTREE-FOCK EQUATIONS FOR CONTINUOUS STATES 473

E* being the core energy (4) or (12). Variation of uy, , gives
N
[Hl——/IN+1,N+1] Uyyy + gl{viiuNJrl—'vi,N+lui_AN+1,iui} =0, (14)
N
with  Ay.y o= HEN+1)+ 3 (5] V41 )~ (5[ N41] (F=1t0 N+1). (19
j=

The energy reduces to E = E°+Ay,; yy15 Aye1, y+1 May therefore be interpreted as the
energy of the valence electron.

1:3. Separation of spin and angular co-ordinates and introduction of angular momentum operators
The equations derived in the previous two sections involved equating ¢ to a single
D-function. To proceed further it is necessary to consider the symmetry properties of the
wave functions, which requires the adoption of a more explicit functional form for the u,.
In the present section we summarize the method used by Hartree as a basis for detailed
numerical calculations (Hartree 1946—7).
The functions #; are taken in the form

ui(x) = 0(ms, s) O (0) D™i(§) %Pi(nz‘lz"r>s (16)

where mj is the spin quantum number (+3), s the spin co-ordinate, and @, ®™ are nor-
malized spherical harmonics (7".4.S. p. 52). The radial functions P,(n;/;|r) remain to be
determined from the variation principle. The quantum number 7, is defined so that there
are (m;—[;— 1) nodes in P;, excluding the origin and infinity, and, for a given state, P;(n,/;|7)
is taken to depend only on #,/;. The set of r;/; is referred to as the configuration.

For a central field model the energy depends only on the configuration; it is therefore
assumed to be a good approximation to take ¥ as a linear combination of D-functions all
belonging to the same configuration.t It is desirable to choose the linear combinations so
as to diagonalize the energy matrix within the configuration. This is facilitated by the intro-
duction of the angular momentum operators L2, M;, S2, M for the total and component
orbital and spin angular momenta. Using vector coupling formulae (7.4.S. chaps. mi,
vin) the linear combinations may be chosen so as to make § an eigenfunction of these
operators. When the configuration and angular momentum quantum numbers give a
unique specification of states this representation results in a complete diagonalization of
the energy matrix within the configuration. When the configuration and angular momenta
do not give a complete specification of states it is necessary to introduce other quantum
numbers, the usual choice being the angular momentum of a part of the configuration,
referred to as a parent term. In this case the energy matrix contains non-diagonal elements
connecting states of the same total angular momenta but different parent terms. Such
elements are usually neglected for bound states.

In general, unlike orbitals occurring in different D-functions cannot be made orthogonal
without imposing additional restrictions on the wave functions. The simplest case where
such a situation arises is the 1S term of the nsn’s configuration, for which

¥ = J(3) [Dfut (n) um (n')} —D{u(n) u* (')},

the + superscript giving the sign of . In this case A(u*(n),u*(n')) and A(u~(n),u~(n'))
are not zero unless f wP(ns) P(n's) dr = 0, but with anti-parallel spins this condition cannot
. > Jo :

T A more complicated case has been treated in detail by Hartree, Hartree & Swirles 1939.
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474 M. J. SEATON ON THE

be imposed without altering the D-functions. In general, unlike orbitals may always be
made orthogonal by imposing the condition

f “Pingl|r) P l| ) dr = 8(i, ), (17)
0

but it should be realized that this may involve additional restrictions on the wave functions.

The evaluation of the matrix elements, assuming unlike orbitals to be orthogonal, is
discussed by Condon & Shortley (7.4.S. chap. vi) and by Hartree (1946—7). Itisconvenient
to summarize the formulae used in reducing (5) and (7) to radial integrals. Writing for
brevity P(n;l;|r) = P;(r) these are:

H,(a,b) = o(mg, m3) 8(L,, 1,) O(mi, my) H#1(a, b), (18)

with / =, or /,, and Hla,b) f (1) L P,(1) dry, (19)

A = —

slag="5 )% )

r’
(ab]ad) = B, ) 8o ) Do+ i ) S Ly 5 o) L L) R{abed) (21)

with R,(abed) f P.(1) (1) 5,(P,P,|1) dr,
’“j Fy(1 1) y,(P,F,[ 1) dry, (22)
1
WBEIY) = f P,2) P rédrz—l—rlj B(2) B,(2) iy (23)

The energy having been expressed in terms of radial integrals the equations satisfied by
the radial functions may be determined (Hartree & Hartree 1936). The equations for
P(2p) in 1522522p7 configurations (¢ = 2 or 4) are quoted for the benefit of future reference.
In the foregoing notationt these are

{742y, (Ls, Ls) +2y(25, 25) + (9= 1) Yo(20> 20) +vY5(28, 2D) + 362 2} P(2P)
—3y1(1s, 2p) P(1s) —3y:(25,2p) P(25) = 0 (24)
(Hartree, Hartree & Swirles 1939). The coefficient v depends on ¢ and on the term value.
Numerical values are given in table 1.

TaBLE 1. THE COEFFICIENT »

3p 9)) 1
7=2 —0-20 - 4004 +0-40
g=4 —0-30 —018 000

2. Anti-symmetric wave functions for continuous states
We consider the problem of determining the wave functions for an (N+-1)-electron
system given the exact wave functions for the corresponding N-electron core.

t The function y, used here is ¥,/r, where ¥, is the function used by Hartree. €y, (= —2A,,,) is as used
by Hartree.
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HARTREE-FOCK EQUATIONS FOR CONTINUOUS STATES 475

2-1. Notation
For any co-ordinate X; the complete (N+ 1)-electron Hamiltonian may be written
‘ N+l ]
H=H+H@+ 3 - (25)
J=11ij
i)

where -H, = ~%V?——Z (26)

1
7;

. , N+l N+l ]
contains X; alone and H@i )= 3 [H+ 3 — (27)
=1 k>j Tik
G+ (k=1)

contains no X; terms. The core wave functions, denoted} by

Unlih) = ¥(X Xy, -5 X5 Ky s Xy
are solutions of He Yy, ™) =E,¢,07). (28)
They are anti-symmetric and may be taken to form an orthonormal set.
(N-+1)-electron functions which may not be anti-symmetric for interchange of co-

ordinate X; with any other co-ordinate are denoted by X. Completely anti-symmetric
functions are denoted by V.

Integration over all co-ordinates except X; is conveniently denoted by f Ldx;L

2:2. Exact equations using an infinite expansion

It follows from the completeness of the ¢, that the complete wave function may be
expanded in the form

Xo= 347 6,00, (29)

where the summation is over all core states, and is understood to include an integration
over states in the continuum. For a given X, this determines the 6, uniquely;

0,00) = [ X dxr L.

The equations satisfied by the , are obtained on writing the Schrédinger equation

[H—-E] X, =0 (30)
in the form f YX(1-1) [H—E] Xy dxil = 0 (all m). (31)

Using (28) and the orthonormality of the ¢, this gives
[Hy —~ 3421 0,(1) + 3 V(1) 6,(1) = 0 (all m), (32)

n=1
where 342, = (E—E,) and /
V(1) = [P0 3 2, (1) axi. (33)
i*17y;

1 This notation is similar to that of Yamanouchi & Kotani (1940).
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476 M. J. SEATON ON THE

For results of physical significance we require the complete wave function to be anti-
symmetric. This requirement may be included in the boundary conditions on X, or we
may solve without this condition and then form the anti-symmetric function V' = /X,

where &7 is the operator 1 Nl

“ywrn &Y

This procedure is always possible so long as we have an exact solution of the Schrodinger
equation.

5

2:3. Approximate equations: the use of an explicitly anti-symmetric expansion

In practical calculations the approximation is invariably made of neglecting part of the
summation over z in the expansion (29); an exact solution of the Schrédinger equation can
then no longer be obtained. The functiont

Xo= 34,70 6,(0) (ny+00) (34)

may be made to satisfy the equations
Jpra H-E1Xgdxt =0 (all m<ng) (35)

which are equivalent to the Schrodinger equation (30) in the limit #,—>oc0. It gives equations
for the 6, of the form (32) with n, m<n,.

An unsatisfactory feature of the restricted expansion (34) is that it gives no consistent
means of obtaining anti-symmetric wave functions. When n,==c0 it is in general no longer
possible to impose anti-symmetry as a boundary condition on X, as is immediately obvious
for the important case where X, represents a continuous state and the ¢, are restricted to
bound states. The anti-symmetrized function &/X;;, may be formed, but this will not be
a solution of

Jrran =Bl Xgdx = 0 @l m<ny),
since (35) does not ensure that

jyf:(l‘l) [H—E]X,dxi! =0 (i1, all m<n,). (36)

For scaftering problems nothing would be gained by this procedure if ¥, is restricted to
bound states (cf. (83), (84)).
An alternative approach is provided by substituting the explicitly anti-symmetric

expansion "
W= 224,71 gutt) (37)
in the equations f JEL-D [H—E]|Wdxil = 0 (all m<n). (38)
Using the anti-symmetric property of the ¥, these may be written
[ 1H=E1 3 5,17 4,(0) ~ N, (27) 6,(2)) dxi = o, (39

1 n is not necessarily in order of increasing E .
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HARTREE-FOCK EQUATIONS FOR CONTINUOUS STATES 4717
which, using (28) and the orthonormality of the ¥,, give

~ [H =31 80(1) + 3 Ton(1) (1) = W1} = 0, (40
where V,,, is defined by (33) and

Win(1) = N[¥(171) [H—E] (27 §,(2) dx? (414)

= N[y [Hy= k4 3 - |p(2) 6,(2) dxp? (415)

= Ny [P 3 (2 6,02) dxi (419

The expression (41¢) for W, is obtained using the Hermitian property of H(171). This
requires that ¢,,(17!) and ¥,(27!) 4,(2) should be sufficiently convergent. It is always
justified if ¢, is a bound state and is probably justified in all cases of practical interest.

While equations (37) and (38), together with a specification of boundary conditions,
define ¥ uniquely it is readily verified that the ¢, are not uniquely defined. In solving the
equations (40) it is therefore necessary to adopt a convention which makes the ¢, unique
without altering the value of V. Expansion (37) gives

JN+D) [0 Fax = 6,(1) = N 3 [1,(17) 427 4,(2) dxi?,

where the left-hand side is uniquely defined. One possible convention consistent with this

would be to take
f¢*(1 -1) ¢ (2)dx, = 0 when m<n<n, (42)

giving 4 (1) = J(N+1) [y Waxp,
| (43)
(1) = SN+ ) [0 WaxT N [P 127 y(2) dxi,
etc.

It is obvious that when the complete expansions are used (7, =o0) both (34) and (37)
give exact solutions of the Schrédinger equation and that ¢, = ¢, provides a solution of the
equations (40). When 7,00, X, is in general not a solution of (36), while with the explicitly
anti-symmetric expansion no such difficulty arises. It may therefore be expected that W
will provide a better approximation to a solution of the Schrédinger equation than does
Xy We may gain some further idea of the relative accuracy of the two expansions by
evaluating [H—E]X;, and [H—E]Y, which are zero for exact wave functions, for the
simple case of N = 1. We obtain

[H-E]Xy=3 t_;,ﬂm ) V) [P D) ;- Xy dx, :
o (44)
[H-E1¥= 3 5 y,0)%(@)[0) 1), Pdx dx,

s=np+1 t—ng+

Itis seen that the second of these expressions will in general be the smaller owing to the more
restricted range of s (note also that the diagonal terms s = ¢ are zero for ¥ but not for X,).

Vor 245. A. 59
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2-4. Discussion of the equations

The equations (40) resemble bound state Hartree-Fock equations, the W, being typical
exchange terms, while the equations (32) resemble the Hartree self-consistent field equa-
tions. The interpretation of the equations may be further discussed by considering the case
where W represents an ion together with an unbound electron such that the total energy £
is less than the ionization potential of the ion. For large x; (40) becomes

[-1v-E20 g = o, (45)
which gives the equation of motion in the asymptotic field of the ion with kinetic energy
1k2 atinfinite separation. There are in general a number of'states ¢, for which 4% = (E—E,)
is positive. The V,,,, and W, give the mean unperturbed exchange fields of these states,
and the V,, and W,,, are coupling terms which allow for the electron-inducing transitions.
The terms involving energetically inaccessible states (442, negative) may be interpreted
as giving a polarization correction.t (An alternative treatment of polarization has recently
been given by Kolodziejski (1951), but this does not allow for exchange.)

When all energetically accessible states are included the anti-symmetric expansion may
be expected to give results of an accuracy comparable to that of the Hartree-Fock method
for valence electron states (with neglect of core perturbation). Results obtained by the
solution of (40) in this approximation have been compared with experiment for elastic
scattering of slow electrons by He (Morse & Allis 1933) and for photo-ionization of Na
(Seaton 19515). Good general agreement with experiment was obtained in both cases,
a considerable improvement resulting from the inclusion of the exchange terms.

3. The use of Hartree-Fock core functions

The present section deals with the approximate form of the equations (40) which is
obtained when Hartree-Fock wave functions are used for the core states. We consider first
the derivation of (40) from (37) and (38) when Hartree-Fock functions are used.

In deriving (40) the ¥, were assumed to be (i) anti-symmetric, (ii) orthonormal and
(iii) solutions of the Schrodinger equation (28). Hartree-Fock functions satisfy (i), giving
equation (89), but are frequently calculated without imposing (ii) (Hartree 1946—7) and
only satisfy (iii) in the trivial case of N = 1. The lack of orthogonality of the ¥, may be
overcome by forming linear combinations, but this may result in a considerable loss of
accuracy in the wave functions. It may be a better approximation simply to ignore terms
arising from non-orthogonality.} Either procedure leads to the equations (40), provided

that E,, is now defined as Jgﬁ,’ﬁ( 179 H(17Y) ,,(17Y) dx7 1. A further difficulty arises with the

W, terms, for which the expressions (41a), (41 ) and (41¢) are not equal using approximate
wave functions. In principle we may always evaluate (41a) and simplify the resulting

t This interpretation is only valid for the anti-symmetric expansion (37). Using the expansion (34)
coupling terms between states of different spin quantum numbers can only be obtained by including

continuous ¥, states.
1 No orthogonality difficulty arises for states belonging to different terms, such as are considered in §4

and part 1I.
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expression using the equations satisfied by the core functions, but in practice this pro-
cedure is very tedious, and it is frequently convenient to use one of the approximate expres-
sions (415) or (41¢). The expression (415) corresponds to the ‘prior’ interaction, and (41¢)
to the ‘post’ interaction in the Born-Oppenheimer approximation (Bates et al. 1950).
3-1. Reduction of integrals

With Hartree-Fock core functions the 7,
over D-functions of the type

Fos(1) = [D2I7) S LD, dx,
(D) = N[DE(1Y [H—E]D,(271) 6,(2) dxi,

and W, may be expressed in terms of integrals

(46)

where D, (1~ ) = Da;,ay, ..., ay; X, X3y ..o, Xyi 1}
Db<2—1) == D{bl’ bz, ceey bN; Xl,X3, ""XN+1}'

The V, , integrals are of a standard type (7.4.S. chap. v1) and need not be considered
further. TheW, , , integrals may be evaluated as follows. The D-functions are expanded
in the form

1
yw

Dy(27) = — 71V g (—=1)%0,(1) Aby),

where J{(N—1)1} A(q;), JA(N—1)'} A(d,) are the minors of 4;(2), 5,(1) in the determinants
for D,(171) and D,(27!) respectively. It should be noted that both A(a;) and A(b,) are
functions of X;,X,, ...,Xy, ;. These expansions give

Wosnon1) = 3 (=1)5*4[ar @) [A%(a) [H—ETAB) dxy .. dxy.| ,(2) dx, (1), (48)

k=1

D(17) =~

(—1)7a;(2) Algy),

J

M=

(47)

which involves only integrals of a standard type (7.4.S. chap. vi). We consider the further
evaluation of W, , ,(prior), (414),and W, , ,(post), (41¢), making the additional assump-
tion that any two orbitals a;, b, are either identical or orthogonal. While this assumption
is not always justified it is a useful approximation in a number of cases of interest. With this
assumption W, , ,(prior or post) is zero if more than two of the g; differ from all the 4,.

All other cases may be reduced to the following three by suitable permutation of the order
of the a;, b (a + or — sign being introduced according to the parity of the permutation):

Case A. a; = b; for j = 1 to N—2, neither of ay_,, ay are equal to b,_, or by:
W, b, a(prior) = [(ayay_,|by$,) — (ay_1ay|byd,)] by,
—[(ayay-,|by_18,) — (ay-yay|by_18,)] by. (49)
Case B. a; = b;forj=1to N—1, ay=+by:

W, (prion) = 3 ([(aya; | u8) — (0,04 By )1
—[(ana;b;4,) —(a;ax15;6,)] by}
+[Hy(ag$,) — A (a8, +olayd,)] by. (50
59-2
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480 M. J. SEATON ON THE
Case C. a; = b, for all j,i.e. D,=D,:
. N
Wa, b,n(prlor) :j kzﬂ{[(akaj | b1,8,) — (“j | by $,)]+ [Hz(‘lj ) "—%k%(‘lj¢n) +”(“j ¢n)]}bj- (61)

W, ;. .(post) is obtained from the above formulae on replacing

(apaq ] br¢n) by v(ap br) A(aq ¢n)
and Hy(a,$,) — 342 A(a,8,) by  Ala,4,) [H,—3k,].

3-2. Comparison with Hartree-Fock equations for bound states

Neglecting allV,, and W, with n==m and taking y,, to be the single D-function D{u; ... uy},
the equations (40) reduce to :
[H,— k5] 6+ % Vi — Vim s — At} = 0, (52)
i=1
N
with s = i) — Y88, Aim) + 3 [l jm) = (] ). (53)
=

This form is obtained directly using the prior interaction, but using the equations (9)
satisfied by the u; it may be shown that both the post-interaction and the ‘exact’ interaction
(41a) give the same equations.

Since for this case W is itself a D-function it is obvious that ¥ is unaltered if constant
multiples of the u; are added to ¢,,. Itis of interest to see how this result follows directly from
the equations (9), (11) and (52), (53). If (52) be multiplied by #}*(1) and integrated over
X, an expression is obtained for A,,; which is identical with (53). It follows that if (52) is
solved with any arbitrary parameters 4, (53) remains valid; the 4, are therefore in-
determinate. It may then be shown that the solution ¢, obtained with A,,; = 0 {all z) gives
A(4;é,,) = 0 (all 7), and that the function

¢m = ¢9n+ Zlumjuj,
J
where the ,,; are arbitrary constants, is a solution of (53) when the 4, are given by
Ay = — Sk i + Z/umj Aji.
J

It is seen that the equation (52) is identical with the Hartree-Fock ‘valence-electron’
equation considered in §1-2.

3-3. Separation of spin and angular co-ordinates and introduction of the total angular momenta

The functions ¢,, may always be expanded in the form

BalX) = 5, Om,s) OpF(6) () L, (mimehl ). (54)
For many purposes it is a useful approximation to retain only a single term in the sum-
mation over /. The present section is devoted to a general discussion of the states arising
from a given configuration of the core, denoted by 7°, together with a free electron of con-
figuration £/. For simplicity y¢ is taken to be a configuration for which the core angular
momenta, denoted by LeS*M4 M, give a complete specification of states. Retaining only
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those terms within the y°k/ configuration, the expansion (37) will include all products

of the form
U (yeLeSe M M| i7Y) 4, (kimPms | 7). (55)

An expansion of this form would in general lead to equations for the ¢,,’s involving coupling
terms connecting degenerate states of the core levels. These may be eliminated by a method
analogous to that used to diagonalize the energy matrix in the bound case (§1-3).

So long as only electrostatic interactions are considered the angular momenta of the
whole system are rigorously conserved. These will be denoted by LTSTMTMY. If the states
of the system be taken in a representation labelled by these quantum numbers, it follows
that there will be no coupling terms connecting states of different total angular momenta,
and hence no coupling terms connecting the degenerate core states. Each set of LTSTMTMT
gives a set of coupled equations for the radial functions, but as in the bound case (7.4.S.
p. 49) these are independent of M7 MY for a given LTST. Consistent with the usual bound-
state procedure the radial equations for the functions F may be taken to depend only on y°kI,
Le§e, LTST; these quantum numbers are conveniently denoted by the single subscript n.
The angular momentum eigenfunctions

X, n = Xp(r°kl, LoS°, LTSTMTMY) (56)
may be obtained in the form

Xo,n = 2 B, Y(y, LoSe, Mg Mg |i1) §(kimlm; |1), (57)

the B, being determined from vector-coupling formulae (7.4.S. p. 228). The radial equa-
tions satisfied by the F,, are then obtained on simplifying (cf. (39))

X m
f{F,,(,()rl)}* [H—E] % (X, »—NXy, ) drt =0, (58)

the integration being over all co-ordinates except r,. The evaluation of the integrals has
been discussed in §§ 3-1 and 1-3.

4. The radial equations for certain nltkl configurations

In the present section we discuss the radial equations and the uniqueness of radial
functions for certain configurations of the form n/9kl. It will be seen that a definite choice of
the spin and angle factors in the wave functions may remove, in part or completely, the
lack of uniqueness in the ¢,.

The notation for radial functions and operators introduced in § 1-3 will be used.

4-1. The nsks configuration

The two core D-functions may be denoted by «* and u~, the 4 sign giving the sign of
m?*. The core term is %S and the complete system is either 3§ or 1S, the former giving

WM =1, Xgy=u*(2)¢*(1), (59)

and the latter LS, MT =0, X, = 712 [u*(2) 6~ (1) —u~(2) ¢*(1)]. (60)


http://rsta.royalsocietypublishing.org/

A A

A\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

482 M. J. SEATON ON THE
The radial equations are
[+ y,(PP)— }?] F = r[y,(PF) +A(PF)] P, (61)
where 7 = +1 for 3§ and —1 for 1S. In both cases
A(PF) — #5(PF) —32A(PF). (62)
The bound function P = P(ns) satisfies the exact hydrogenic equation
[#5+Le] P =0, (63)
and hence there is no post-prior discrepancy. Multiplying this by F and integrating gives
H5(PF)+3eA(PF) = 0, (64)
while multiplying ( 61) by P and integrating gives
TA(PF) = s5(PF) + (1—7) R,(PPPF) — {k?A(PF). (65)
From (62) and (64), A(PF) = —}(k>+¢) A(PF).

For7 = +1 (35), (62) and (65) are identical and A indeterminate. As in § 3-2 we may choose
the orthogonal solution giving A(PF) = 0. For 7 = —1 (1), (62), (64) and (65) give
AMPF) = —§(k?+¢) A(PF) = —R,(PPPF).

In this case F'is uniquely defined (see § 1-3). We cannot impose the orthogonality condition
(17) without modifying the equations and wave functions.

4-2. np%*kp and np*kp configurations
The np? configuration with ¢ = 2 or 4 gives the core terms 3P, 1D and !$. These will be

denoted by subscripts 1, 2 and 3, and the corresponding P(np) radial functions will be
denoted by P;, P, and P;. The angular momentum states of np?%p are

(1) npe(3P)kp: %S 2P 2D 4§, P, D
(2) np?('D) kp: 2P 2D 2F
(3) npe(1S) kp: 2p

2P and 2D are the only angular momentum interactions common to more than one of the

core terms, and will be the only cases to be considered in detail. The radial equations for
F\(kp), Fy(kp) and Fy(kp) take the form?

3
. n=1
WhCI‘C Knn = pmnyO(PmPn> +Umny2(PmP71)) : (67)
I/an = mn{ﬁmnyO(Pan> —I—ymnyz(Pm Fn) +/]‘mn} Rz’ (68)

An(POSt) = AP, F) Bn{(9—1) yo(B, B) + =3k 1+ AR, F,) 0,,95(B, ). (70)

+ We neglect terms arising from A(P,,P,) not being exactly unity when n=m, since these involve only
second-order effects in the small differences between the P’s.
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The constants p, ¢, @, f and y are given in table 2, and the equations for the core radial
functions are given by (24) (omitting the 1s and 2s terms). It should be noted that the
coefficient of y,(P,, P,) in A,,,(post) is 6, and not §,,,.

TABLE 2. MATRIX ELEMENTS FOR 7%} CONFIGURATIONS (=2 OR 4)

q Lr, sT m, n p o o i v )
2 2p 1,1 2 +0-20 —-3 1 +0-40 —0-20
1,2 0 0 +145 1 +0-16 —0-20
o 1,3 0 0 +1 1 —0-20 —0-20
< 2,1 0 0 +345 1 +0-16 +0-04
- 2,2 2 +0-28 +1 1 +1-84 +0-04
< — 2,3 0 —0-16 4/5 —1.5 1 +0-04 +0-04
> C 3,1 0 0 +1 1 —0-20 +0-40
oI 3,2 0 ~016 5 —1.5 1 +0-04 +0-40
= 3,3 2 0 +1 1 +0-40 +0-40
2%,
o 2 2D 1,1 2 —0-04 -1 1 +0-16 ~0-20
O 2
=S 1,2 0 0 -3 1 —0-08 —0-20
g 2,1 0 0 —3 1 —0-08 +0-04
5‘2 2,2 2 —0-28 -1 1 —0-32 +0-04
Eg 4 2p 1,1 4 —0-20 -2 1 —0-05 -015
80 1,2 0 0 -5 1 —0-02 —0-42
ag O 1,3 0 0 +1 1 —0-20 —0-60
oz 2,1 0 0 _J5 1 —002 ~018
T 2,2 4 —0-28 _z 1 —0-59 —0-09
e 2,3 0 +0-16 /5 +1 45 1 +0-04 —0-36
3,1 0 0 +1 1 —0-20 0
3,2 0 +0-16 5 +1 45 1 +0-04 0
3,3 4 0 +% 1 +0-40 0
4 2D 1,1 4 +0-04 1 1 —0-14 +0-18
1,2 0 0 1 0 +0-18 —0-18
2,1 0 0 1 0 +0-18 —~0-18
2,2 4 +0-28 1 1 +0-34 —0-06

4-3. The exact resonance approximation

Certain essential features of the solutions of these equations may be obtained by con-
sidering an approximation in which the y, and R, terms are consistently neglected. For the

) ¢

A \
V. \

._1 X core states this gives equal energies and identical radial functions for the three terms; the
;5 S subscripts 1, 2 and 3 on P(np) and £? may therefore be omitted. This will be referred to as
O H the exact resonance, or E.R., approximation.
= Denoting the core potential by
N | V= qy,(PP) (71)
E 8 and introducing the function
o S(F) = [yo(PF)+A(PF)] P, (72)
<Z .
%g with? A(PF) = s##(PF) + (¢—1) R,(PPPF) — 1k?A(PF), (73)
§&t) L the equations for the functions F, reduce to

72 .
22 [+ V3R F, = 55 abn ). (74)
I n
o=

+ Using the equation for Pit may be shown that A(post) takes this form in the E.R. approximation.
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They may always be uncoupled by taking suitable linear combinations, and the solutions
may then be expressed in terms of two functions # and ¢ satisfying

[0 4V -3k F = JI(F), (75)

[#2+V -3k G =—q7(9). (76)

By the argument of §§ 3-2 and 41 it may be shown that # may be chosen orthogonal to P,

giving APF) = —3(k2+e) APF) =0, (77)
but that ¢ is uniquely defined and that

A(P%) = —L1(k*+e¢) A(P¥) = — R (PPP%). (78)

Table 3 gives the linearly independent sets of solutions for the F’s in terms of # and .
It will be seen that in this approximation there are no coupling terms between F; and F,
for np*kp2D, and that both functions are constant multiples of .

TABLE 3. EXACT RESONANCE SOLUTIONS FOR F, F, AND F}

q LT ST solution (1) solution (2) solution (3)

2 p Fi= {27 0 +39
F,= 0 +2F — /0%
Fy= +3F —BF —-29

2 D Fi= -% +9 —-
F,= +F +9 —_

4 2p Fi= +%F 0 +39
Fo= 0 +F +45%
Fy= +3F +4/6F -9

4 2D Fi= +% 0 —
Fy= 0 +F —

We may now give the E.R. approximation for those states (45, P, D and 25) which give
no coupling between the core terms. All of these are constant multiples of #, with the
single exception of np%p*S, for which the radial function is a constant multiple of ¥.

It is seen that the non-orthogonal function ¢ occurs in those states of the np?p con-
figuration which are also allowed states of np?*! (i.e. np3+S, 2P, 2D and np>2P). These are the
states for which, in any of the D-functions composing the complete wave function ¥, the
functions u; occur with spin and angle factors which are always different from those of ¢.

4-4. Solution of the coupled equations
The E.R. approximation consists in making the following approximations in the equations
for Fy, F, and F;:
(i) Neglecting the y, and R, terms and the differences between P,, P, and P;, and
(i) putting k% = £} = k% = &~
Experience in bound-state calculations indicates that (i) is unlikely to lead to serious

error, but the significance of (ii) requires further examination. We consider as an example
the simplest case, np%kp2D. For this the E.R.solution (1) (table 3) is —F, = +F, = +% (k).
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If approximation (i) is made without approximation (ii) the equations for F;, and F, are
[0 V=48] Fy = # (—4F,—4F,)|

. 79
[0+ V— Y31 Fy = o (— 3F, —1F,).| 79)

It is readily verified that a solution of these equations would be given by
Fi=—F(k), F,=+%(k,), (80)

if I(F (ky)) was equal to 5 (F (k,)). If this condition is nearly satisfied we may expect (80)
to provide a good approximation to the solution of (79).

This condition cannot be discussed further until the normalization of &% (k) has been
defined. The exchange integrals in # depend on the form of the functions for small to
moderate radial distances, and it is therefore convenient to normalize in terms of the
behaviour at the origin. For any function F(k/|7) this may be measured in terms of

K[F]=[F[r"1],—. (81)

If we normalize & (k) so that K[ % (k)] is independent of £%, then it is to be expected that the
condition J (Z (k,)) = # (Z (k,)) will be satisfied to a good approximation.

The functions (80) may be taken as an initial approximation for the iterative solution of
the coupled equations (79) or of the exact radial equations, the normalization condition
K[F,] = —K[F,] being maintained throughout. A second solution may be obtained,
starting with E.R. solution (2), and maintaining K[F,] = + K[F,] throughout. In obtaining
solutions of the coupled equations it is necessary to adopt a uniqueness convention for both
sets of solutions. A suitable convention, consistent with (77) and (78) in the E.R. approxi-
mation, would be to take Ay 341, = 3y + s (82)

for both sets of solutions. A convenient means of satisfying such conditions at all stages of
an iterative solution has been given by Seaton (19514).

4-5. Radial equations for 1s22s22p2kp configurations
Denoting P(1s), P(2s) by §1, $2, the radial equations for 1522s22p?kp may be obtained on
adding the following terms to the equations given in §4-3:

(i) the term > 2y,(Sk S8%)
is added to all 7, b |

(ii) the term Ly, (S8 F,,) Sk,
is added to all W, , e

(i) theterm 3 f RSP SE) —HR(B,SESSF)}E,
is added to all W, (prior), and the term

2 Fm AEE) (20(S557) B =39 (S3.F) 57

is added to all W, (post).

In the E.R. approximation the relations (77), (78) remain valid if the y, and R, terms are
included in the equations for the F,, and the bound-state equations (24), or if they are
omitted in all of these equations.

VoLr. 245. A. 60
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ParT II. ELECTRON EXCITATION OF THE GROUND CONFIGURATION TERMS OF O1

5. Expressions for electron excitation rates
5-1. General collision theory
Using the expansion V' = ¥ /v, (:7!) ¢,(¢) for the wave function of a system consisting
n

of an ion plus a free electron, and neglecting continuous ¥, states, the usual quantum-
mechanical expression for the current gives for large radial distances,

i= i, (83)
with R AL ) (84)

To determine the rate of transitions between two non-degenerate states n and 7', the
wave functions must be determined with asymptotic form

ikpr
by ~ei £, (0) =, (85)
eikn'r
b~ 0:8) (86)
The inelastic collision cross-section is then given, in units 7a%, by
Q(n—n') =%%—'ff,m,]25inﬂd0d¢, (87)

all other quantities being in atomic units.

For many purposes a more convenient quantity than @(n—n") is the collision parameter,
Q(n,n") = k2Q(n—n"), introduced by Hebb & Menzel (1940). Detailed balancing requires
that 2(n,n") = Q(n',n).

5-2. Degenerate systems

The collision parameter connecting two degenerate levels z» and #’, with wave functions
¥, (s=1tow,) and ¢,, (=1 to w,), is defined by

Qn,n') = 3 2(ng,ny). (88)
s, ¢
The cross-section for the transition n—#’ is then given by
Q(n—>n') = Q(n,n') k2w,

Spin factors have been omitted in (85) to (87). These may be allowed for by taking the
incident wave to be plane polarized. 2(n,n") is, of course, independent of the choice of
directions of incidence and spin polarization.

5-3. Resolution into free-electron orbital angular momentum components

The plane wave e*? may be expanded in the form
s = 13 [4n(21-+1)]0F 00 L (| ) (89)
4

(T.A.C. p. 22), where G(kl|r) = (mkr/2)}J,,,(kr) has asymptotic form
G(kl|7) ~sin (kr—4im). (90)


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HARTREE-FOCK EQUATIONS FOR CONTINUOUS STATES 487

The incident wave may therefore be written as

o, = T+ [4m(2A+ D HOPOOL F, (k1) (91)

where F, (k,l|r) ~sin (k7 —§Im) 4 C*(n,, n,) eltEar—m, (92)
and the scattered wave as

b= 3 30ms) [4m(20+ V)] 4O ™ L (k1 |1, (93)

where F, (kU |r) ~ C"(ng,ny) eltenr=i'm, (94)

The conservation of component angular momenta for the whole system gives
ms = M§+31—M§ and m'= M§—MY,

where M§, M§ and MY, M7 are the component angular momenta of ¢, and ¢,..
Using the orthogonal properties of the spherical harmonics the collision parameter may
be written

Qo) = 3 (20 41) 3|l (95
n U s, t

It may therefore be expressed as the sum of terms arising from the orbital angular
momentum components [’ of the scattered wave. The amplitudes C*(n,, ;) may be further
analyzed into terms arising from the orbital angular momentum components / of the
incident wave. In many cases the contributions from /= /" are much greater than the
contributions from /==/".1 If the latter be neglected we may write

Q(n,n') = ;Ql(n, n'), (96)

where £'(n,n') involves only the / components of both incident and scattered waves.
The conservation theorem of Mott (1931) and of Bohr, Peierls & Placzek (unpublished;
see T.4.C. p. 133) states that for any non-degenerate state g,

3 2g.p<(+1), D)

from which it follows that Q(n,n") < (20+1) 0, (98)

where w. is the smaller of w,, @,.

5:4. Resolution into total angular momentum interactions

In § 3-3 it was shown that the states of an ion plus a free [-electron could most conveniently
be represented using the total angular momenta. For a given angular momentum inter-
action, L] STM7, M{, the amplitudes C*i(n,n’) are independent of ML MY, giving

3Gl )P = 3 gty |CHnm) (99)

T This only applies to transitions for which 7 and n” have the same parity. In general the conservation
of parity requires that the only non-zero contributions arise from (/—1') even if n, n’ have the same parity,
and from (I—1!') odd if n, n’ have opposite parity.
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the summation being over all interactions with different L7'S7. «is the interaction statistical
weight, (2L7+1) (257 41), and 2(2/+1) is the free electron statistical weight. It follows
that Q(n,n’") = > i (n,n") with

i

Qbi(n,n') = 2(0"%-’1|C“(n,n’) |2. (100)
n
The conservation theorem limit takes the form
> Qin,n") <L (101)
n¥n’

The use of total-spin interactions is common in collision theory, but total orbital angular
momentum interactions do not appear to have been used previously. The justification for
this procedure is that the complete wave function may always be expressed as a linear com-
bination of total angular momentum wave functions, and that physical results, summed
over degenerate states, are independent of the representation chosen (see, for example,

Schiff 1949).

5:5. The distorted wave Born-Oppenheimer approximation

The D.W.B.O. approximation (Massey & Mohr 1952; Erskine & Massey 1952) is based
on the assumption that all coupling terms are small. The wave incident on state 7 is
calculated with the neglect of all coupling terms and the wave scattered from state »’ is
calculated with the inclusion of only those coupling terms directly connecting » and 7’.
The cross-section is given by (87) with

Sru(0,8) == 5= [$50) (1) (1) =Wy, (1] dx, (102)

(T.A.C. pp. 113, 146; see also Erskine & Seaton 1953), where ¢,, ¢, are solutions of

103
[H — 482] Vg W = 0. (10%)
¢, is taken to have asymptotic form (85) and
e eik;,rl
(1)~ et (01, ) S (104)

where k,, is a vector of modulus £, in the (0, ¢) direction.

When approximate wave functions are used for ¥,, ¥, the detailed balanced condition
Q(n,n') = Q(n',n) is always satisfied using (41a), but may not be satisfied using either
(410) (prior interaction) or (41¢) (post interaction); in all cases £,,;0,(n, 7') = L, (n's1).

6. Electron excitation of the ground configuration terms of O1

6:1. Wave functions and energies for O1
Hartree et al. (1939) have calculated Hartree-Fock wave functions for the three terms,
3P, 1D and 1S, of the ground configuration 1522s22p* of O 1. The observed and Hartree-Fock

energies, the ¢,,,, parameters and the statistical weights are quoted in table 4. As before,
the three terms are denoted by subscripts 1, 2 and 3.
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TABLE 4

excitation energy in rydbergs

term n w, observed Hartree-Fock €,
3p 1 9 0 0 1-26,
1D 2 5 0-145 0-152 1-20,
1§ 3 1 0-308 0-378 1-11,

6-2. Calculations using a modified D.W.B.O. approximation

A A

approximations were made in addition to those essential to the D.W.B.O. method:
(i) The exchange distortion terms, ,,, were omitted.
(ii) The free orbitals were assumed orthogonal to the bound orbitals.

(iii) The y, terms in the potentials were omitted.

Excitation functions for the 1->2 and 13 transitions have been calculated by Yama-
nouchi, Inui & Amemiya (1940) using a modified D.W.B.O. approximation. The following

These calculations gave curves for £2(1,2) and 2(1, 3) with maxima of 2(1,2) = 1350
at £} = 0-64Ry, and (1, 3) = 197 at £} = 0-81 Ry. It was found that, compared to the con-

tribution from the p waves, all other contributions were utterly negligible. Using the conservation
limit (98), Bates et al. (1950) were therefore able to show that these results were too great

by factors of at least 89 and 66 respectively.

OF

The configuration np*p has been discussed in § 4, where it was shown that 2P and 2D

were the only angular momentum interactions leading to transitions. According to (100)

the collision parameters are given by
Q(1,2) = 2%{6]01"2”(1, 2)[2-+10/C0 (1,2)[3,]
0r(1,3) 2%{6[()’”2”(1, 3) ).
Since ¥}, and V}; are identically zero, the complete D.W.B.O. approximation gives

(Citn,m) | = [ F, Wi,
me 0

) ¢

where the W2:i are given by (68) and table 2, and the F,, are solutions of
[%ﬁ; + l’/:nm - %kizn] Fm - Wmm =0,

bounded at the origin and normalized to F,, ~sin (£, 7—}m+7,).

S

approximations (i) to (iii) and in addition.
(iv) The y, terms in the exchange integrals were omitted. In this approximation

240
Ql’(l, 2) = m‘Ro(P1P2F2F1) |2°

SOCIETY

OF

The modified D.W.B.O. calculations were checked for 2(1,2) at £ = 0-64 Ry, making

The value £(1, 2) = 1240 was obtained, in good agreement with the previous calculation
and showing that the further approximation (iv) is of little consequence.t In this approxi-

T There are also other minor differences. We used calculated energies and the same radial function (Py)
for both potentials, while Yamanouchi et al. used observed energies and allowed for the differences of the

radial functions in the potentials.


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

490 , M. J. SEATON ON THE

mation the 2D interaction gives no contribution so that the conservation limit (101) is
00(1,2)+0¢(1, 3) < 3; the modified D.W.B.O. results are seen to be too large by a factor
of order at least 500.

+3—
+2

+1j-

+
Jun
S
l
-

0 1 8
P—
..10.—
=20~
-30~

Ficure 1. Examples of wave functions. Curve g, the effective potential f;;,. Curve b, the non-
exchange radial function F; for £}=0-64Ry. Curve ¢, 10 x P(2p). Curve d, the E.R. radial
function & for k2=0-64Ry. Curve ¢, the E.R. radial function ¢ for £2=0-64Ry.

The reason for the failure of this approximation may be seen by referring to figure 1.
Curve a gives the effective potential, §,; = - -V —% (?2) , which is seen to have a minimum
for r=1-6. As emphasized by Yamanouchi e a/. this minimum, augmented by polarization
effects, makes possible the bound 2p° state of O~. It follows that, for £} = 0-5, §,, +k3/2 is
close to zero between r = 1 and r = 2, giving a small curvature to F,. This is illustrated in
curve b. In consequence the first node of F| is far out, and there is a large overlap between
F, and P (curve ¢). This accounts for the large modified D.W.B.O. results. Under these
conditions the exchange distortion and coupling terms, far from being small, will tend to
dominate the radial equations.t

t No calculations have been made using the complete D.W.B.O. method, with which more reasonable
results might be obtained (cf. Massey & Mohr 1952).
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It is also clear from figure 1 that the bound and free radial functions are certainly not
orthogonal. If approximation (ii) is not made we have

240
Ak

240
Q0(2,1) = 2 | Ry B, EF) — (K +e) AR F) ABF) P,

01(1,2) = o AR E F) — 5B +ey) AR Fy) AP Fy) 2

where use has been made of the equations satisfied by the P(2p)’s. Numerical calculations
for k2 = 0-64Ry gave Ry(P,B,F,F,) = 1-70,
1k +ey) A(PBF) AP Fy) = 2:59, §(R3+6)) A(P Fy) A(PF) = 2486,
2(1,2) = 334, 2(2,1) = 244.
Itis seen that the omitted orthogonality terms give contributions larger than, and of opposite

sign to, the terms included by Yamanouchi ¢z al. They also lead to a departure from the
detailed balance condition.

6-3. The exact resonance approximation: wave functions

The equations (75), (76) for the E.R. radial functions & and % were solved for
O1+p-electron, making the approximation of neglecting the 1skp and 2skp exchange
interactions (§4+5). Since the 152p and 2s2p exchange interactions were included in the
calculation of the bound wave functions the complete relations (77), (78) could not be
satisfied. The A parameters were therefore adjusted to make & and ¢ satisfy

A(PF) =0, (109)

(k2 +¢) A(P9) = R)(PPP%). (110)

It was found that a fairly rapid convergence was obtained by satisfying these relations at
all stages of the iterative solutions (Seaton 19514). The 2p function used was P = P,.}

The asymptotic form of the E.R. functions was obtained by fitting to the Bessel function
solutions for large radial distances:

7 = ("% (k) + 4Ty (k)]
(111)
9 = | (") by k) + 0 k),
the asymptotic forms being then given by
ﬁ~asinxf,6’cosx,} (112)
Y ~ysinx—J cosx,

with x = kr—}m. Table 5 gives the calculated values of k2, §/k, k2y and 8/k, which remain
finite as k0. & and ¢ were normalized for all £2 so that K[#] = K[¥] = 100 (§4-4).
Figure 1d and ¢ gives graphs of # and ¢ for 2 = 0-64 Ry, which may be compared with the
non-exchange function of curve &.

+ For strict consistency P =P, should be used, since this is calculated without Y, terms, but it was con-
sidered that P, might give a slightly better approximation.
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TaBLE 5. THE asymMPTOTIC FORM OF E.R. WAVE FUNCTIONS
% — k2 — Bk —k2y — 8k
0 412 159, 2-81 141-,
0-08 4-90 1417, 6-93 119-,
0-148 545 13-8; 8:57 104+,
0-30 6-56 12:10 916 773
0-64 7-94 9-28 +4-65 43-7
0-98 8-54 7-35 —0-42 272

6-4. The exact resonance approximation: collision parameters

If the energy differences are neglected the collision parameters are given by the exact
resonance expressions (cf. 7.4.C. p. 148)

0Q(1,2) = 2(2,1) =12 sin2 ({—§),]

Q(1,3) — 2(3,1) — F¥sin? ((—£), (113)

0(2,3) = 2(3,2) = {5sin? ({—£),]
where { and § are the phases of # and ¢ (i.e. { = tan~! (f/a) and § = tan~! (y/d)). This will
be referred to as approximation I. While these expressions may be expected to give the
general features correctly, they will be considerably in error for small values of £2. A better
approximation is obtained when energy differences are allowed for in calculating the £’s.
In §4-4 it was shown that approximate wave functions, allowing for energy differences,
could be obtained from the E.R. functions when the latter were suitably normalized
(approximation II).

It is necessary to consider the calculation of the amplitudes C'(r,m) given the general
mathematical solutions of the radial equations. In general, there will be three linearly
independent sets of solutions, convergent at the origin, for F|, F, and F;, and without loss
of generality these may be taken to be real. We denote them by FV, F?, F¥ (n = 1,2, 3),
and express their asymptotic forms as

FY~a,sin (x,+2,), F2?~b,sin(x,+u,), FD~c,sin(x,+v,), (114)
where x, = k,r—4lm. The general mathematical solutions are then
E, = uFV+0F2 4wk, (115)

u, v and w being arbitrary constants. We consider the determination of the amplitudes in
the solutions which have asymptotic form
F, ~sinx;+C(1,1) ein,
F,~C(1,2) el*, (116)
F;~C(1,3) els,
Substituting (115) in (116) and equating coefficients of ei*» and e~i* gives
ud, +vB,+wC, =1,
ud,+vBy+wC, = 0, (117)
uA;+vBy+wCy = 0,
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and ud¥+ovBf+wC = 1+2C(1,1),
ud¥+ovB¥ +wCy = 21C(1,2), (118)
ud¥+ovB¥+wC¥ = 2iC(1, 3),

where 4, = a,e %, B, = b, e, C, = ¢,e . Solving (117) for u, v, w and substituting
in (118) gives finally

4F B Cf
D(1+2iC(1,1))=| 4, B, C, |, (119)
4; By G
43 B CF
D2C(1,2) =| 4, B, C, |, (120)
4, By G
A% B¥ C¥
D2iC(1,8) =| 4, B, C, |, (121)
_ 4, By Gy
with 4, B,
D=| 4, B, C, (122)
4, By G
In approximation IT we take (cf. table 3),
4= (ay+if), By =0, Cy = 3(y,+1dy),
4, =0, B, = (ay+1,), Cy = /5 (75+18,), (123)

A3 = 3(a5+1f3), By =5 (ag+1fs), Cy=—(y3-+1ds),

where a,, £, and y,, 0, are the constants for Z (£,) and ¢(£,) in (111).

Itis necessary to consider separately those energies for which 147 is less than the excitation
energy of state 3(15). Considering the coupled equations for F,, F, alone, the E.R. approxi-
mation gives as before two functions # and ¥, the former satisfying (75) and the latter

satisfying [#0+V—1k] 9 = 1.9 (9), (124)

with 7 = —1L. It was not considered that this would differ sufficiently from the function ¢
previously computed (satisfying (124) with 7 = —4) to justify the labour of a separate
calculation. In place of (123) we have for this case

4, =—/5 (“1+i/?1): B, = 3(y,+14)), }
4, = 3(“2+i/?2), B, =5 (72‘%?.52%

and C(1, 2) is given by an obvious modification of (120).

Graphs of the £’s in approximation IT are given in figure 2, obtained from interpolating
the constants in table 5. Since the detailed balance condition is not satisfied £(n, m) and
Q(m, n) have been computed separately. The conservation theorem limit (101) is seen to be
satisfied. (The satisfaction of these conditions is not necessarily a guide to the accuracy of
the result; both are satisfied in approximation I.) It is seen that there is a discontinuity

(125)

Vor. 245. A. 61
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of slopet in £(1,2) and 2(2,1) at the threshold energy (k2 = 0-378 Ry) for excitation of
state 3. This provides an interesting confirmation of the idea (see, for example, Bates ¢f al.
1950) that, for strong coupling, the neglect of energetically possible transitions will tend
to result in £ being over-estimated.

Q(1, 2) +2(1, 3)

20
Q(1, 2)
i 2(2,1)+2(3, 1)
(2, 1)
1-0f
[ Q(1, 3)
Q(3,1)
0
0-2— Q(2, 3)
Q(3, 2)
01

k2
Ficure 3. 754“2(72’) m) . approx. I, sin? ({—§); ——— approx. I, n=1, m=2;
n-m
«—-—approx. II, n=1, m=3; .... approx. II, n=2, m=3.

1 There is also a jump discontinuity in £2(1, 2), but this is so small that it cannot be shown to the scale
of figure 2.
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Figure 3 gives a comparison of approximations I and II. In approximation I
758 (n, m) [4w,w,, = sin? ({—§)

for all n,m. We compare this with 750(n, m) /40, 0,, where Q(n, m) = J{Q2(n, m) 2(m,n)} is

calculated on approximation II.

md

6:5. Solution of the coupled equations

The coupled equations for ¥, and F, were solved for £} = 0-30Ry, for which state 3 is
energetically inaccessible (¥ was put equal to zero). A4,,,(prior) was used, since this is not
a function of 7 and is therefore much simpler than A,,,(post). The only other approximation

was to use the mean 2p function, P = (P, + P,)/2, in the exchange integrals. This is unlikely
to lead to any significant error. The two linearly independent sets of solutions were first
written as

R =—J571, FP=39,

B =375, BP =59}

and taken to be normalized so that K[#]] = K[#]] = 100 and K[¥%] = K[¥}] = 100.
The uniqueness convention used was to put

2~/5/111(FF1) +5/112(FF2') = 3«/5’121(FF1) +2/122(FF2)3

which ensures that #* and #* reduce in the E.R. approximation to the previously computed
& and 9. :

The asymptotic forms of %, Z}, 4} and ¥} were determined in accordance with (111).
The final results are summarized in table 6. Approximation III was obtained as an inter-
mediate stage, using the full E.R. equations, including 1skp and 2skp exchange interactions
and the correct fields including y, terms. It was not carried to quite the same degree of
self-consistency as the other solutions. Approximation IV is the solution of the complete
coupled equations.

TABLE 6. SUMMARY OF SOLUTIONS FOR £k?=0-30Ry, k4=0-148Ry

approx. = —a,; —h —" —0 —0y =P —72 -8, 0£(1,2) 2(2,1) 2, 2)

I 36-8 5-33 57-9 40-2 36-8 5-33 57-9 40-2 0-48 048 0-48
1I 21-9 6-6 30-6 42-3 36-8 533 57-9 40-2 0-81 0-62 0-71
III 17-8 2:7 30-0 371 26-4 0-24 55-8 336 0-98 0-88 0-93
v 179 3-0 21-5 31-8 28-8 —0-:06 46-7 26-8 1-06 0-90 0-98

Approx. I: E.R. wave functions, no 1s, 2s exchange, no energy differences (k2=£3).
Approx. II: As I, with allowance for energy differences.

Approx. III: As II, with 1s, 25 exchange.

Approx. IV: Solution of coupled equations.

Putting F; equal to zero when state 3 is energetically inaccessible is equivalent to neg-
lecting a polarization correction, which should be allowed for by taking F, tending to zero
exponentially as r—c0. That this correction is small is suggested by the smallness of the jump
discontinuity in £(1, 2) at the 1§ threshold. It is in any case unlikely to affect the relative
accuracy of the various approximations compared in table 6. The agreement between the

61-2
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E.R. and exact solutions of the two coupled equations is seen to be good, especially when
1s, 25 exchange terms are included. It will be seen that # (¢ and f) gives better agreement
between approximations IIT and IV than does ¢ (y and ¢). This is due to the use of 7 = —4
in (124) for approximation III in place of the correct value of 7 = —Ll. When state 3 is
excited it is therefore to be expected that approximations ITI and IV W1ll give even better
agreement for £(1, 2) than is shown in table 6.

~ The 16%, difference between 2(1,2) and 2(2, 1) in approximation IV is probably a
consequence of the post-prior discrepancy (cf. § 5-5). In the absence of any further criterion
as to which is most reliable, it appears reasonable to use the geometric mean, Q(1, 2).

6-6. Other contributions to the collision parameters

Having improved the accuracy of the p-wave 2P interaction it is necessary to reconsider
the importance of the other contributions. The p-wave 2D interaction may be calculated
using the D.W.B.O. method, which gives

v 2 i

where the #’s are now normalized to asymptotic amplitude unity. This was calculated for
k% = 0-30Ry using the approximation ITI wave functions, with the result 2#-*2(1,2) = 0-007.
This is less than 19, of the 2P contribution and is almost certainly given sufficiently
accurately by this method.

Yamanouchi ¢z al. found that the incident and scattered d-wave was next in importance
to the p-wave. For this the bound and free orbitals are automatically orthogonal, and the
other approximations of Yamanouchi et al. are unlikely to lead to serious error. Their
calculations gave £24(1,2) rising slowly from the threshold, having the value 0-077 at
k} = 1-0Ry, and a maximum of 0-95 at £ = 4-0Ry. Within the range of the present calcula-
tions we may conclude that £ is barely significant.

6-7. Summary

At the check point it was found that the most important correction to approximation 1T
was the inclusion of 1s, 25 exchange terms. Since these terms have the same form in the
equations for # and ¥, the correction to the phase difference ({—§&) increases as the
difference between # and ¢ increases. It therefore appears reasonable to assume a con-
stant percentage correction to {2 at all energies. Final curvesfor 2(1, 2), £2(1, 3) and 2(2, 3)
are given in figure 4. These have been obtained by multiplying the approximation II values
of 2 by a factor of 1-31 to give agreement with approximation III at the check point (see
§ 6-5), and making some adjustment in the energy scales in order to give figure 4 in terms of
observed energies. The parameters cannot be much larger than the values given, since the
latter rise to within about 709, of the conservation limit. It also appears improbable that
they have been over-estimated to any great extent. A tentative estimate of the probable
error in (1, 2) might be given as +30%,. The uncertainty in £(1, 3) is somewhat greater
owing to the larger value of the coefficient y,5 ((68) and table 2), and an additional uncer-
tainty in £(2, 3) is introduced by the potential coupling terms. Fortunately, £(2, 3) is of
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little importance in astrophysical problems. The accuracy of the present calculation should
be adequate for most astrophysical applications.}

For higher energies, transitions to excited configurations must be taken into account
(for £2>=0-809 the 2P interaction gives transitions to 3p3P). The p-wave contributions cannot
increase much beyond the values given in figure 4, and must eventually decrease. This will
be compensated to some extent by the contributions from higher angular momentum com-
ponents. The best simple approximation for higher energies is probably to take the £’s
as constant at the maximum values given in figure 4. For sufficiently high energies they
must eventually tend to zero, but this is unimportant in most applications.

2-0—
B £2(1,2)
- 0-4—
B B £2(1,3)
— = 0-3f
S -
E:LO"
S = 0-2— £2(2,3)
— 0'1.—
PN R TN NN SR NSNS N AN T N
0 0-2 04 06 0-8 0 0-2 0-4 0-6
K | k2

Ficure 4. Final collision parameters for excitation of the O1 ground configuration terms (1=3P,
2=1D, 3=15). Q(n,m)=Q(n—>mWkiw,= Q(m—>n)¥k2 w,,, with @ in units 7a, and £ the elec-
tron energy in rydbergs (13-54 V).

7. Elastic scattering of slow electron by O1

The elastic scattering of slow electron by O1is of importance in determining the collision
frequency in the ionized layers of the Earth’s atmosphere. The elastic collision cross-section,
Qr = 2(1,1)/9k%, remains finite as £} 0, and is therefore a more convenient quantity
than the collision parameter £2(1,1). We consider separately the various contributions

to Q.

7-1. The s-wave

The contribution of s electrons has been discussed in detail by Bates & Massey (1947).
The situation is complicated by the possibility of resonance due to the existence of a 2p*3s
excited state of O~ with near zero binding energy. In solving the Hartree-Fock equations
for free s-electrons, Bates & Massey allowed for this possibility by including a variable
polarizability term in the potential. Figure 5 curve a gives Q% calculated with the experi-
mental polarizability (case A), which does not give the resonance effect. This is near to the

t Barbier (1948) has attempted to deduce the excitation rates for O1 from astrophysical data (together
with the Hebb & Menzel (1940) parameters for Omr). His equations are only strictly valid when 2 is in-
dependent of energy, which is not a good approximation for a neutral atom. The result obtained,
(1, 2)=0-002, is too small by a factor of order 10-3.
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smallest @5, obtained for any value of polarizability. When resonance does occur, Q% is
much larger (case B).t
7-2. The p-wave, 2P interaction

(i) For energies greater than the 1D threshold, Q% may be calculated using the E.R.
wave functions of § 6-3, together with the formulae given in § 6-4. This gives the full line
part of curve b, figure 5.

(i1) For energies less than the D threshold,
41
0,2 __ =" qin2
QE 3 k% sin X’
where y is the phase of the function F satisfying

[#0-V—1k3] F = — 27 (F).

In view of the uncertainty in @3 the labour of calculating this function did not appear
justified. If we replace y by &, the phase of %, we obtain at the 1D threshold @4 = 2-937aZ.

3._ [

0 01 0-2 0-3
k% in units of 13-54 eV
Ficure 5. Partial cross-sections for elastic scattering of electrons by O1. Curve g, Q% calculated by

Bates & Massey (1947), assuming a polarizability of 5-7A.U. (case 4). Curve b, contribution of
the 2P interaction to Q%. Curve ¢, sum of other contributions to Q%.

The limiting value obtained in (i) above was 2:-347a2. The dashed part of curve & was

therefore obtained by putting
2:34\4 1

QP — (—~) 21 sinee.
E 2:93) 3k2

Using the phase of the non-exchange function F gave @47 — 0-087aZ at the 1D threshold,
which is much too small.

7-3.  The p-wave, other interactions
Neglecting y, and R, terms the sum of all other p-wave interactions (25, D and *S, P, D)
gives 321
Q= EXZ] sin?¢,
where { is the phase of #. This is given in figure 5, curve c.

+ The uncertainty introduced by the possiblity of resonance only arises for the s-wave. There is no
uncertainty of this sort for the collision parameters connecting the ground configuration terms, since £° is
identically zero for inelastic collisions involving a change in orbital angular momentum.
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7-4. Summary

There is strong experimental evidence for the existence of a stable excited state of O~
(Massey 1950). If this state is in the 2p*3s configuration with a binding energy which is not
too small, or if it is in a configuration other than 2p*3s, then resonance will not occur and
case 4 may give a good approximation to @%. The p-wave is then important in determining
the exact value of the cross-section. If, on the other hand, the resonance phenomena does
occur for the s-wave, then the p-wave contribution to @ is utterly negligible.

The author is indebted to Professor H. S. W. Massey, F.R.S., for suggesting the present
investigation, and to Professor Massey and Professor D. R. Bates for much helpful advice.
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